

ADULT ECHOCARDIOGRAPHY LABORATORY

Approved By: E. Foster, MD

Date: 5/8/2012

Issued By: Matthew Bogerman, BS, RDCS

Pages:

Transthoracic Echocardiogram (TTE)

I. PURPOSE

This policy describes the procedure for performing a transthoracic echocardiogram.

II. SETTING

Hospital-based and Outpatient Clinic Echocardiography Service

III. RESPONSIBILITY

Responsibility for echocardiographic imaging lies with the sonographer who performs the echo examination.

IV. PREPARATION

- A. Obtain examination order, any previous exam report height and weight via the EMR.
- B. Take the patient's blood pressure in right arm.
- C. Enter patient's name, MRN, DOB, height, weight, BP, accession number, and indication for the examination into appropriate fields.
- D. Apply the ECG leads to the patient.

V. PROCEDURE - Standard Protocol-TTE/Echo

I. Parasternal Windows

- A. Long axis (LAX) views
 - 1. 2D of standard view -Left ventricle (LV), Mitral Valve (MV), Aortic valve (AV) and left atrium (LA)
 - a. 2D measurements of LVIDd and LVIDs with moderate to severe grades of Aortic and mitral Regurgitation (just below the tips of the mitral leaflets)
 - 2D measurement of aortic root at the level of the sinuses of Valsalva at end diastole
 - 2. Color flow Doppler of AV, MV, and inter-ventricular septum
 - 3. M-mode of Aortic root and left atrium (LA)
 - 4. M-mode of MV at leaflet tips
 - 5. M-mode of IVSd, LVd, PWd, and LVs
 - a. 2D measurement of IVSThd and PWThd
 - 6. Parasternal view of the PV
 - a. 2D view of the PV from the RV outflow view
 - b. Color flow over the PV
 - c. CW of the PV(100mm/sec sweep speed)
 - i. Measure End diastolic gradient and peak gradient of the pulmonary regurgitant jet
 - d. Pulmonary annulus diameter
 - 7. Ascending Aorta
 - a. 2D view and measurement of the ascending aorta (all patients)
 - 2D measurement of aortic root, sinotubular junction, and multiple points along ascending aorta for all Bicuspid aortic valve, Marfan's, Ehler-Danlos, and other patients with dilated ascending aorta
 - RV inflow view
 - a. 2D of the RV inflow (the left ventricle should not be visible in this view)
 - b. Color flow Doppler of Tricuspid valve (TV)
 - c. CW Doppler measurement of regurgitant jet, if any(100mm/sec sweep speed)
- B. Short axis (SAX) views
 - 9. 2D, Base (AV, PV, TV)
 - a. Enlarged view of AV
 - i. Color flow over zoomed view, including area of membranous septum
 - ii. Attempt to visualize right and left coronary ostia
 - b. PV
- i. Color flow over PV and RVOT outflow tract

- PW Doppler at the level of the PV for measurement of VTI (100mm/sec sweep speed)
- iii. CW Doppler measurement of PV(100mm/sec sweep speed)
 - 1. Peak and end diastiolic gradients of PI, if present
- c. TV
- i. CW Doppler through TV, regardless of jet presence(100mm/sec)
- 10. 2D at the MV level
 - a. Color flow Doppler over MV to assess any MR origin
 - M-Mode through valve if suspect MVP, SAM
 - c. In mitral stenosis:
 - i. Careful analysis of commissures for calcification
 - ii. Identify minimum orifice for planimetry
- 11. 2D at the papillary muscle level
 - a. M-mode of IVSd, LVd, PWd, and LVs (if not obtained in parasternal window)
- 12. 2D at the apical level

II. Apical Windows

- A. Four Chamber (4-CH) Views
 - 1. 2D of 4-CH, LV (both at 16cm and Zoomed)
 - a. Color flow of MV
 - b. PW Doppler at MV leaflet (100mm/sec)
 - i. E/A ratio
 - ii. DT (Deceleration Time)
 - iii. Pressure ½ time
 - iv. TDI (Tissue Doppler imaging-mitral annulus and lateral wall -basal level)
 - v. PW at 25mm/s sweep to look for respiratory variation (in the presence of pericardial effusion/cardiac tamponade or thickening)
 - c. CW Doppler at MV inflow
 - i. MVA measurement by pressure half time if valve is stenotic,
 - ii. Measurement_of regurgitant jet, if any) -100mm/sec
 - iii. dp/dt of MR jet when LV ejection fraction < 40%
 - d. PW of right upper pulmonary vein (for diastolic dysfunction, shift baseline upwards to detect flow reversal in presence of more than mild MR) 100mm/sec
 - Measure end diastolic/ end systolic LV areas (Simpson's Rule/Method of Discs) to allow for the calculation of the ejection fraction
 - f. Measure apical 4 LA end systolic area to obtain LA end systolic volume
 - q. Special Considerations:
 - i. PISA calculations for any severe MR
 - ii. LV outflow tract gradients, if HCM present/suspected with and without Valsalva

2. 2D of 4-CH, RV

- a. Color flow of Tricuspid Valve (TV)
- b. CW Doppler through TV regardless of color flow jet presence, 100mm/sec
 - a. Measurement of TR, if present
- c. PW Doppler, if stenotic or repaired
- d. 2D measurements of right ventricle and right atrium (be specific)
- e. M-Mode through lateral TV annulus (TAPSE measurement)
- f. Tissue Doppler (TDI) through lateral annulus to assess TASV (tricuspid annular systolic velocity), if TAPSE abnormal or indicated by diagnosis
- B. Five Chamber (5-CH) Views
 - 1. 2D of LVOT (5-CH, view)
 - a. Color flow of AV
 - b. PW Doppler of LVOT -100 mm/sec
 - c. Simultaneous recording of MV/LVOT Doppler for IVRT measurement
 - d. CW Doppler through AV
 - a. VTI of CW signal
 - b. Record and measure Al jet, if present
 - i. Pressure half-time measurement
 - 2. Pedoff probe use
 - a. Pedoff is to be used for any Aortic Stenosis

- b. Obtain standard apical CW
- c. Obtain Right Sternal Border CW
- d. Obtain SSN velocities

C. Two Chamber (2-CH)Views

- 1. 2D and color flow of 2-CH, MV
- Measure end diastolic/ end systolic LV areas (Simpson's Rule/Method of Discs) to allow for the calculation of the ejection fraction
- 3. Measure apical 2 LA end systolic area to obtain LA end systolic volume

D. Three Chamber/ Apical Long (3-CH) Views

- 1. 2D and color flow of 3-CH, MV and AV
- 2. Aortic and AI velocities, if AS/AI present
- 3. HOCM gradient, if present

E. Subcostal Views (supine with knees bent)

- 1. 2D of 4-CH
 - a. Color flow of MV, TV
 - b. Color flow of IAS (PW of shunt if suspected)
- 2. 2D of IVC
 - c. Color flow of IVC
 - d. PW of hepatic vein
 - e. Perform multiple "sniff" tests to show collapse
- 3. Short axis views
 - a. perform as needed
 - b. Color flow Doppler over IAS if indicated
- 4. 2D view, color flow, and PW of abdominal aorta (especially in all severe Ai cases)

F. Suprasternal Notch

- 1. 2D of the distal ascending, arch, and proximal distal aorta
- 2. Color flow visualization to assess for AI
- 3. PW in prox. descending to assess Al reversal
- 4. CW of proximal descending aorrta
- 5. 2D measurement of proximal. descending Aorta in diastole
- 6. 2D short-axis of the descending and PA, if able
- SVC flow measurements are indicated in all patients with Fontan circulation and d-transposition with atrial switch

G. Exam Specific Views

- 1. Saline contrast study with previously undiagnosed RV enlargement or pulmonary hypertension
 - a. One passive agitated saline study.
 - b. Repeated agitated saline study at least once with Valsalva.
 - c. Saline contrast for TR jet enhancement
 - d. A minimum of 10 seconds (or approximately 10 cycles) should be recorded
- 2. LV opacification contrast indicated when <80% of endocardium visible
- 3. 3D views as needed or specified by exam indication/physician order