Noninvasive Evaluation of Right Atrial Pressure

Roy Beigel, MD, Bojan Cercek, MD, PhD, Huai Luo, MD, PhD, and Robert J. Siegel, MD, Los Angeles, California

In current practice, right atrial pressure (RAP) is an essential component in the hemodynamic assessment of patients and a requisite for the noninvasive estimation of the pulmonary artery pressures. RAP provides an estimation of intravascular volume, which is a critical component for optimal patient care and management. Increased RAP is associated with adverse outcomes and is independently related to all-cause mortality in patients with cardiovascular disease. Although the gold standard for RAP evaluation is invasive monitoring, various techniques are available for the noninvasive evaluation of RAP. Various echocardiographic methods have been suggested for the evaluation of RAP, consisting of indices obtained from the inferior vena cava, systemic and hepatic veins, tissue Doppler parameters, and right atrial dimensions. Because the noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide the most accurate estimate of RAP. The authors review the data supporting current guidelines, identifying areas of agreement, conflict, limitation, and uncertainty. (J Am Soc Echocardiogr 2013;26:1033-42.)

Keywords: Right atrial pressure, Central venous pressure, Hemodynamics, Noninvasive evaluation, Echocardiography

The terms “central venous pressure” (CVP) and “right atrial pressure” (RAP) are synonymous as long as no obstruction of the vena cava is present. The gold standard for the evaluation of RAP is invasive monitoring using a central venous catheter. Yet this is an invasive method not without risks and is thus not practical for widespread application. The normal range for RAP is between 1 and 7 mm Hg. Increased RAP is associated with adverse outcomes and is independently related to all-cause mortality in patients with cardiovascular disease. Although the gold standard for RAP evaluation is invasive monitoring, various techniques are available for the noninvasive evaluation of RAP. Various echocardiographic methods have been suggested for the evaluation of RAP, consisting of indices obtained from the inferior vena cava, systemic and hepatic veins, tissue Doppler parameters, and right atrial dimensions. Because the noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide the most accurate estimate of RAP. The authors review the data supporting current guidelines, identifying areas of agreement, conflict, limitation, and uncertainty. (J Am Soc Echocardiogr 2013;26:1033-42.)

The terms “central venous pressure” (CVP) and “right atrial pressure” (RAP) are synonymous as long as no obstruction of the vena cava is present. The gold standard for the evaluation of RAP is invasive monitoring using a central venous catheter. Yet this is an invasive method not without risks and is thus not practical for widespread application. The normal range for RAP is between 1 and 7 mm Hg. Increased RAP is associated with adverse outcomes and is independently related to all-cause mortality in patients with cardiovascular disease. Although the gold standard for RAP evaluation is invasive monitoring, various techniques are available for the noninvasive evaluation of RAP. Various echocardiographic methods have been suggested for the evaluation of RAP, consisting of indices obtained from the inferior vena cava, systemic and hepatic veins, tissue Doppler parameters, and right atrial dimensions. Because the noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide the most accurate estimate of RAP. The authors review the data supporting current guidelines, identifying areas of agreement, conflict, limitation, and uncertainty. (J Am Soc Echocardiogr 2013;26:1033-42.)

The terms “central venous pressure” (CVP) and “right atrial pressure” (RAP) are synonymous as long as no obstruction of the vena cava is present. The gold standard for the evaluation of RAP is invasive monitoring using a central venous catheter. Yet this is an invasive method not without risks and is thus not practical for widespread application. The normal range for RAP is between 1 and 7 mm Hg. Increased RAP is associated with adverse outcomes and is independently related to all-cause mortality in patients with cardiovascular disease. Although the gold standard for RAP evaluation is invasive monitoring, various techniques are available for the noninvasive evaluation of RAP. Various echocardiographic methods have been suggested for the evaluation of RAP, consisting of indices obtained from the inferior vena cava, systemic and hepatic veins, tissue Doppler parameters, and right atrial dimensions. Because the noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide the most accurate estimate of RAP. The authors review the data supporting current guidelines, identifying areas of agreement, conflict, limitation, and uncertainty. (J Am Soc Echocardiogr 2013;26:1033-42.)

The terms “central venous pressure” (CVP) and “right atrial pressure” (RAP) are synonymous as long as no obstruction of the vena cava is present. The gold standard for the evaluation of RAP is invasive monitoring using a central venous catheter. Yet this is an invasive method not without risks and is thus not practical for widespread application. The normal range for RAP is between 1 and 7 mm Hg. Increased RAP is associated with adverse outcomes and is independently related to all-cause mortality in patients with cardiovascular disease. Although the gold standard for RAP evaluation is invasive monitoring, various techniques are available for the noninvasive evaluation of RAP. Various echocardiographic methods have been suggested for the evaluation of RAP, consisting of indices obtained from the inferior vena cava, systemic and hepatic veins, tissue Doppler parameters, and right atrial dimensions. Because the noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide the most accurate estimate of RAP. The authors review the data supporting current guidelines, identifying areas of agreement, conflict, limitation, and uncertainty. (J Am Soc Echocardiogr 2013;26:1033-42.)
Echocardiography

Doppler echocardiography is routinely used to noninvasively estimate RAP. The Doppler echocardiographic methods to estimate RAP include assessment of the inferior vena cava (IVC), SVC, and hepatic vein indices of size and flow; Doppler systemic venous flow; tricuspid valve Doppler inflow; tricuspid valve tissue Doppler; and evaluation of right atrial (RA) dimensions. However, in uncommon circumstances, the flow into the right atrium and consequently the Doppler velocities may be affected by RA compression or distortion, as well as in the setting of RV inflow obstruction due to tumor or tricuspid stenosis. In these situations, assessing the tricuspid gradient can be useful for the estimation of RAP.

IVC Indices

The IVC is a highly compliant vessel, and consequently its size and dynamics vary with changes in CVP and volume. Blood flow from the superior and IVC into the right atrium is biphasic, with the largest forward flow occurring during ventricular systole. In general, there is a reciprocal relationship between pressure and flow; when flow increases (in the IVC as well as the right atrium), pressure decreases and vice versa. During inspiration (which produces negative intrathoracic pressure), vena cava pressure decreases and flow increases (in the IVC as well as the right atrium), pressure decreases and vice versa. During inspiration (which produces negative intrathoracic pressure), vena cava pressure decreases and flow increases (in the IVC as well as the right atrium), pressure decreases and vice versa. During inspiration (which produces negative intrathoracic pressure), vena cava pressure decreases and flow increases (in the IVC as well as the right atrium), pressure decreases and vice versa.

As RAP increases, flow into the right atrium and consequently the IVC diameter and area are consistently largest when the patient is evaluated in the right lateral position, intermediate in the supine position, and smallest in the left lateral position. Patient position, therefore, is an important factor to consider when correlating IVC size and shape with hemodynamic variables.

In 1979, Natori et al. first described measuring IVC diameter and its change during respiration. Several studies have evaluated the correlation between RAP and different IVC parameters. However, fewer studies have evaluated the validity of the suggested IVC parameters for the accuracy of the estimation of RAP. Most, but not all, studies have demonstrated good correlations between the IVC collapsibility index (IVC_{max} – IVC_{min})/IVC_{max} and RAP (0.57 < r ≤ 0.76). Although there is a correlation between IVC diameter and RAP (0.72 < r ≤ 0.86), some reports suggest that the correlation found between IVC diameter and RAP is not sufficient for the reliable estimation of RAP because of the variability and overlap between patients with normal RAPs and those with elevated RAPs. It is hypothesized that an increase of RAP beyond a certain level may cause only minimal increases in IVC diameter and the degree of IVC collapsibility with inspiration. Thus, IVC dimensions and collapsibility can be used to detect elevated CVP, but they have limited utility in identifying the magnitude of CVP elevation.

On the basis of several studies, the American Society of Echocardiography (ASE) in 2005 recommended using maximal IVC diameter 1 to 2 cm from the junction of the right atrium and the IVC at end-expiration and the IVC collapsibility index to give an estimate of RAP. This measurement is best obtained from the subcostal view, with the IVC viewed in its long axis (Figure 2). Measurements should be made with the patient lying supine (because the left lateral position may underestimate maximal IVC diameter). However, Brennan et al. evaluated the 2005 ASE recommendations for assessing RAP and found that only 43% of patients were correctly classified. On the basis of the results of their study, they suggested a new cutoff range that gives an estimation with range limits of 5–10 mm Hg (Table 2). The newer 2010 ASE guidelines have been revised as noted in Table 2. These parameters yield more accurate results when estimating low or high RAP: IVC diameter < 2.1 cm and collapse > 50% correlates with a normal RAP of 0 to 5 mm Hg.

Figure 1 Evaluation of JVP. With the patient lying at about 45°, the highest point of pulsation of the jugular vein is identified (arrowhead). This is then related to the angle of Louis, found at the junction of the manubrium with the body of the sternum (asterisk). The vertical distance to the top of the jugular venous wave (arrow) can be determined and reported, in centimeters, as the JVP.
IVC diameter < 2.1 cm with < 50% collapse and IVC diameter > 2.1 cm with > 50% collapse correspond to an intermediate RAP of 5 to 10 mm Hg. IVC diameter > 2.1 cm with < 50% collapse suggests a high RAP of 15 mm Hg. The guidelines recommend using mid-range values of 3 mm Hg for normal and 8 mm Hg for intermediate RAP. If there is minimal collapse of the IVC (<35%) and/or secondary indices of elevated RAP are present (Table 3, discussed next), the guidelines recommend upgrading to the higher pressure limit (i.e., 5 and 10 mm Hg in the cases of normal and intermediate RAPs, respectively). Patients with low compliance with deep inspirations may have diminished IVC collapse, and a “sniff” maneuver causing a sudden decrease in intrathoracic pressure and by that accentuating the normal inspiratory response might be required to differentiate those with true diminished IVC collapsibility from those with normal collapsibility.

The validity of adjusting the evaluation of IVC size to body surface area (BSA) is controversial. Data correlating IVC size indexed mainly to BSA are inconsistent and limited to only a few studies. Mintz et al.31 indexed IVC size measurements to patients’ BSAs and found a correlation between IVC index and RAP, but they still concluded that the degree of correlation did not permit the use of the IVC for an accurate estimation of RAP. Moreno et al.33 found no correlation between RAP and IVC parameters, whether indexed to BSA or not (r < 0.25), whereas Cherix et al.44 showed a good correlation (r = 0.92) between IVC index and RAP for evaluating hydration status in hemodialysis patients. Kosiak et al.45 developed an alternative index consisting of the IVC/aorta ratio for evaluating patients’ volume status in the emergency department. They found in 52 healthy volunteers that IVC and aorta diameters significantly increased after fluid intake and proposed an IVC/aorta index of 1.2 ± 2 SD for SD = 0.17 as a reference value for the healthy population aged 20 to 30 years; however, this finding needs confirmation. Brennan et al.41 did not find that indexing the IVC to BSA improved accuracy over the standard IVC measurement for RAP estimation, and the ASE 2010 recommendations do not recommend an IVC index related to BSA.

The published data indicate that IVC size and collapsibility indices are appropriate to define RAP as high or low and are not a method for providing a precise numeric value. It should be noted that the IVC can be dilated in individuals with normal RAPs; Table 4 lists the common causes of a dilated IVC in the setting of normal RAP.57-66 To overcome some of the limitations of RAP estimation through IVC indices, additional Doppler echocardiographic parameters have been evaluated and proposed to better quantify RAP (Table 5), which are further discussed.

Systemic Venous Indices

The central venous flow pattern seen in the vena cava, jugular, and hepatic veins is characterized as seen in Figure 3A by three distinct waveforms when evaluated by Doppler. The first is the systolic wave (Vs), caused by RA relaxation and descent of the tricuspid ring associated with RV systole. The second is the diastolic wave (Vd), which occurs during rapid ventricular filling when the tricuspid valve is open. The third is a positive A wave, which might not be present in normal individuals. In the majority of normal adults, inspiration increases the magnitude of Vs and Vd, whereas the A wave, if present, decreases in size. At low or normal RAPs, there is systolic predominant venous flow, such that the velocity of Vs is greater than the velocity of Vd (Figure 3A). As demonstrated in Figure 3B, with elevation of RAP, the systolic flow predominance is lost, such that Vs is substantially decreased, and Vs/Vd is <1. The
higher the RAP, the lower the pressure gradient between these veins and the right atrium, causing diminished forward systolic flow. This blunted gradient is present in patients with restrictive heart disease and elevated right-sided filling pressures. Sivaciyan and Ranganathan\(^\text{15}\) demonstrated that the jugular venous flow pattern and its variation are closely related to RAP. Although Vs/Vd > 1 was associated with normal RAP, those who demonstrated ratios ≤ 1 had elevated RAPs.

Appleton et al.\(^\text{10}\) found in healthy individuals that SVC flow was obtainable in all subjects, but hepatic vein flow imaging was adequate in only 40% of patients. A subsequent study by the same group in 14 patients with restrictive ventricular physiology\(^\text{50}\) also showed that in patients with elevated RAP, Vs/Vd was ≤ 1. A study by Ghio et al.\(^\text{51}\) also confirmed that SVC flow was closely related to RAP, with a normal Doppler pattern identifying patients with normal RAPs, a predominant Vs pattern identifying those with slightly elevated RAPs (≤ 8 mm Hg) (sensitivity, 69%; specificity, 81%), and a predominant Vd identifying those with elevated RAPs (> 8 mm Hg) (sensitivity, 52%; specificity, 95%). Consistent with the initial study by Appleton et al.,\(^\text{50}\) the success rate reported in obtaining flow velocity curves from the SVC was

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of patients</th>
<th>Timing of invasive and noninvasive evaluation</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natori et al.(^\text{30})</td>
<td>14</td>
<td>NA</td>
<td>IVC CCI was inversely proportional to CVP when > 10 cm H(_2)O</td>
</tr>
<tr>
<td>Mintz et al.(^\text{31})</td>
<td>111</td>
<td>NA</td>
<td>IVC EDD normalized to BSA was correlated with RAP (r = 0.72)</td>
</tr>
<tr>
<td>Moreno et al.(^\text{33})</td>
<td>175</td>
<td><24 h</td>
<td>IVC diameter was poorly correlated with RAP (r ≤ 0.4)</td>
</tr>
<tr>
<td>Nakao et al.(^\text{29})</td>
<td>83</td>
<td><24 h</td>
<td>IVC diameter (r = 0.85) and area (r = 0.89) were correlated with RAP</td>
</tr>
<tr>
<td>Simonson et al.(^\text{34})</td>
<td>27</td>
<td>Simultaneous</td>
<td>IVC EDD was correlated with RAP (r = 0.85); area (r = 0.89) were correlated with RAP</td>
</tr>
<tr>
<td>Kircher et al.(^\text{35})</td>
<td>83*</td>
<td><24 h</td>
<td>IVC EDD was correlated with RAP (r = 0.76); best sensitivity, specificity, and predictive accuracy for RAP < 10 and > 10 mm Hg when IVC was ≥ 50%</td>
</tr>
<tr>
<td>Jue et al.(^\text{37})</td>
<td>49†</td>
<td>Simultaneous</td>
<td>IVC diameter at expiration was poorly correlated with RAP (r = 0.58)</td>
</tr>
<tr>
<td>Nagueh et al.(^\text{39})</td>
<td>35</td>
<td>Simultaneous</td>
<td>IVC diameter ≤ 12 mm predicted RAP ≤ 10 mm Hg (sensitivity, 25%; specificity, 100%)</td>
</tr>
<tr>
<td>Ommen et al.(^\text{40})</td>
<td>71</td>
<td>Simultaneous</td>
<td>IVC dimension was correlated directly with RAP (r = 0.74)</td>
</tr>
<tr>
<td>Brennan et al.(^\text{41})</td>
<td>102‡</td>
<td>±1 h of invasive evaluation</td>
<td>Five different classifications on the basis of IVC size and collapsibility (see Table 2)</td>
</tr>
</tbody>
</table>

EDD, End-diastolic dimension; IVC CCI, IVC collapsibility index; NA, not available.
* Patients on mechanical ventilation excluded; retrospective analysis.
† All patients on mechanical ventilation.
‡ Thirty percent of patients had undergone cardiac transplantation.

Table 2 Estimation of RAP using IVC parameters

<table>
<thead>
<tr>
<th>IVC diameter (cm) and collapse (%)</th>
<th>ASE 2010 recommendations(^\text{43}) RAP range (mean) (mm Hg)</th>
<th>Brennan et al.(^\text{44}) RAP range (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal: ≤ 2.1 and > 50</td>
<td>0–5 (3)</td>
<td>≤ 2.1 and > 55</td>
</tr>
<tr>
<td>Indeterminate*</td>
<td>5–10 (6)</td>
<td>≤ 2.1 and 35–55 or > 2.1 and > 55</td>
</tr>
<tr>
<td>High: > 2.1 and < 50</td>
<td>10–20 (15)</td>
<td>≥ 2.1 and ≤ 35–55</td>
</tr>
</tbody>
</table>

* In cases which the IVC diameter and collapse do not fit the normal or high criteria. Preferably secondary indices of elevated RAP should be integrated (see Table 3).
and CVP in 34 supine patients. They determined with good accuracy that ultrasound collapse pressure was capable of accurately estimating RAP in mechanically ventilated patients (sensitivity, 86%; specificity, 90%).

100% compared with 76% in the hepatic veins. Patients with severe tricuspid regurgitation were excluded from this study because this might cause altered flow patterns in the systemic veins.

Table 3: Indices of elevated RAP

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated IVC with diminished respiratory collapse</td>
</tr>
<tr>
<td>Tricuspid E'/e' ratio > 6</td>
</tr>
<tr>
<td>Diastolic flow predominance in the SVC, jugular, or hepatic veins</td>
</tr>
<tr>
<td>Bulging interatrial septum to the left atrium</td>
</tr>
<tr>
<td>Dilated right atrium</td>
</tr>
</tbody>
</table>

Table 4: Causes for IVC enlargement in the presence of normal RAP

<table>
<thead>
<tr>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prominent Eustachian valve</td>
</tr>
<tr>
<td>Athletic training</td>
</tr>
<tr>
<td>Large BSA</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
</tr>
<tr>
<td>Narrowing of the IVC-RA junction</td>
</tr>
<tr>
<td>Web or tissue present in the IVC</td>
</tr>
</tbody>
</table>

Jugular Venous Flow and JVP

Several investigators have used ultrasonography of the jugular veins to predict CVP. Although the external jugular vein is easier to visualize, its tortuous course, competent valves, and small size might not accurately reflect the transmission of pressure from the right atrium. The right IJV is a large vessel that directly connects to the SVC, but when evaluated clinically, the IJV may be visible only 20% of the time. Lipton observed and described sonographic patterns within the IJV determining venous collapse between the supine, semiupright, and upright positions and concluded that patients can be differentiated as those with low (<10 mm Hg), high (>10 mm Hg), and extremely high (>20 mm Hg) CVPs. Donahue et al. demonstrated a good correlation (r = 0.82) between IJV end-expiratory diameter and CVP in 34 supine patients. They determined with good accuracy whether a patient had low or high CVP. Simon et al. assessed right IJV vascular compliance and concluded that an increase in the cross-sectional area of the right IJV of >17% during the Valsalva maneuver ruled out elevated RAP. Deol et al. compared ultrasound collapse pressure with JVP obtained clinically and with CVP in a group of 38 patients, of whom 11 (29%) were mechanically ventilated. Although the ultrasound collapse pressure was capable of accurately measuring JVP, it underestimated CVP, especially when CVP levels were high, concluding that measuring the ultrasound collapse point (which reflects JVP) does not reflect true CVP.

Hepatic Vein Dimensions, Flow Patterns, and Collapsibility

The right and left hepatic veins empty into the IVC at the level of the diaphragm and are best imaged by echocardiography from the subcostal view (Figure 4). The hepatic venous flow pattern is closely related to the central venous flow pattern (Figure 3B). Like the IVC, as RAP rises, the hepatic veins dilate and collapse less with inspiration. In one study, left hepatic vein diameter correlated well (r = 0.81) with the percentage increase in CVP. Imaging was obtained in 90% of patients, yet underestimation occurred when RAP values exceeded 12 mm Hg.

Using Doppler, the hepatic vein systolic filling fraction, which is the ratio of the velocity-time integrals (VTIs) (Vs VTI/Vs VTI + Vd VTI), can be obtained. A value < 55% was found to be the most sensitive (86%) and specific (90%) sign of RAP > 8 mm Hg. With higher RAP, there was a decrease in systolic filling fraction. In this study, the best model for the prediction of mean RAP was 21.6 – 24 × hepatic vein systolic filling fraction. This was further validated in the same analysis on a prospective population of 50 patients, with a good correlation (r = 0.89), but reproducibility was only moderate (r = 0.5) in another study. Importantly, hepatic vein flow velocities have been validated in mechanically ventilated patients (sensitivity, 86%; specificity, 90%), provided that the velocities are averaged over five or more consecutive beats and constitute at least one respiratory cycle.

Thus, the use of systemic and hepatic vein flow parameters can serve as an alternative to IVC parameters in individuals in whom the IVC may appear enlarged despite normal systemic venous pressure, or when subcostal views may not be optimal. It should be remembered that atrial compliance and relaxation, severe tricuspid regurgitation, and tricuspid anular descent affect flow patterns and make them less reliable. In addition, the presence of atrial fibrillation or past cardiac surgery can cause the hepatic vein systolic flow to be diminished regardless of RAP.

Tricuspid Doppler and Doppler Tissue Imaging (DTI)

Maximum velocities of the tricuspid E and A waves are significantly higher during inspiration than during expiration when measured from the atrial side of the tricuspid valve. However, when measured from the ventricular side in the apical four-chamber view, respiration affects only the maximum velocity of the E wave, without greatly affecting the E/A ratio. In contrast to mitral flow, on which age has an important effect, Pye et al. found that there was no significant correlation between any tricuspid flow parameter and age, although two smaller studies did find weak correlations. Scapellato et al. used tricuspid Doppler to estimate RAP, finding a significant correlation with RAP (r = 0.98). The highest positive correlation was found between RV filling acceleration rate and RAP. An acceleration rate > 560 cm/sec² predicted RAP > 5 mm Hg with sensitivity of 100% and specificity of 99%. On the basis of the data in this study, the authors developed a detailed formula for the calculation of RAP: RAP = -1.263 + 0.01116 × acceleration rate, and they confirmed this finding in another study.

Tissue Doppler allows the recording of myocardial and anular velocities. The maximal early filling velocity through the tricuspid valve during diastole (E wave) increases with increasing RAP. Evaluation using DTI can measure the velocity of tissue relaxation of the lateral tricuspid annulus in diastole (e' wave; Figure 5). Nagueh et al. found a strong relationship between RAP and the E/e' ratio (r = 0.75). They found that a high E velocity combined with a low e', resulting in an E/e' ratio > 6, signals an RAP > 10 mm Hg (Figure 5B). This correlation was also accurate in patients with mechanical ventilation. Sade et al. reproduced these findings, showing a good correlation between E/e' ratio and RAP (r = 0.7), giving the formulation of RAP = 1.62 E/e' + 2.13, which was also applicable and a good indicator of RAP in mechanically ventilated patients. In 12 patients who underwent several simultaneous measurements, this ratio was also a valid indicator of RAP change, with an increase of >2 in the E/e' ratio associated with an increase of ≥ 5 mm Hg in RAP. In patients who have undergone cardiac surgery, tricuspid E/e' ratio might not be as accurate for the estimation of RAP. A subsequent study by Patel.
Table 5 Methods for evaluation of RAP besides IVC evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of patients</th>
<th>Timing of invasive and noninvasive evaluation</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic veins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jugular vein pattern and collapsibility</td>
<td>34±53</td>
<td>Simultaneous</td>
<td>CVP categorized as high (≥10 mm Hg) or low (<10 mm Hg) was correlated with IJV diameter (r = 0.82)*</td>
</tr>
<tr>
<td></td>
<td>67±64</td>
<td>Within 1 h</td>
<td>An increase of >17% IJV CSA during Valsalva maneuver ruled out elevated RAP (+12 mm Hg) (sensitivity, 90%; specificity, 74%; NPV, 90%; PPV, 60%)</td>
</tr>
<tr>
<td></td>
<td>38†,65</td>
<td>Simultaneous</td>
<td>Ultrasound compression was correlated with JVP but underestimated CVP (r = 0.81–0.91 for JVP, r = 0.62–0.5 for CVP)</td>
</tr>
<tr>
<td>Jugular venous flow</td>
<td>82±48</td>
<td>Within 1 d</td>
<td>Vs > Vd was associated with normal RAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vs < Vd was associated with elevated RAP</td>
</tr>
<tr>
<td>SVC flow</td>
<td>40±49</td>
<td>NA</td>
<td>Defined the normal pattern of SVC flow (Vs > Vd)</td>
</tr>
<tr>
<td>SVC flow</td>
<td>120±51</td>
<td>Within 1 h</td>
<td>2 ≥ Vs/Vd ≥ 1 (normal) = RAP ≤ 5 mm Hg (sensitivity, 86%; specificity, 78%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vs/Vd > 2 (predominant systolic) = RAP ≤ 8 mm Hg (sensitivity, 69%; specificity, 81%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vs/Vd < 1 (predominant diastolic) = RAP > 8 mm Hg (sensitivity, 52%; specificity, 95%)</td>
</tr>
<tr>
<td>Hepatic veins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic venous flow</td>
<td>40±49</td>
<td>Within 12 hours</td>
<td>Defined normal hepatic venous flow (Vs > Vd)</td>
</tr>
<tr>
<td></td>
<td>14±50</td>
<td></td>
<td>Vd/Vs ≤ 1 was associated with elevated RAP</td>
</tr>
<tr>
<td>Left hepatic vein diameter</td>
<td>32±66</td>
<td>Simultaneous</td>
<td>Left hepatic vein diameter was correlated well with RAP (r = 0.81)</td>
</tr>
<tr>
<td>HVFF</td>
<td>35±39</td>
<td>Simultaneous</td>
<td>>55% suggested RAP > 8 mm Hg (sensitivity, 86%; specificity, 90%)§§</td>
</tr>
<tr>
<td></td>
<td>50±39</td>
<td>Simultaneous</td>
<td>RAP = 21–24 × HVFF (r = 0.89)</td>
</tr>
<tr>
<td></td>
<td>71±40</td>
<td>Simultaneous</td>
<td>Modest correlation with RAP (r = −0.5)§</td>
</tr>
<tr>
<td>DTI</td>
<td>77</td>
<td>Simultaneous</td>
<td>Acceleration rate was a predictor of RAP (r = 0.98)</td>
</tr>
<tr>
<td>Acceleration rate of RV early filling</td>
<td>62±64</td>
<td>Simultaneous</td>
<td>Acceleration rate > 560 cm/sec² predicted RAP > 5 mm Hg (sensitivity, 100%; specificity, 99%)</td>
</tr>
<tr>
<td>Tricuspid E/e’ ratio</td>
<td>89±65</td>
<td>Simultaneous</td>
<td>E/e’ ratio > 6 suggested RAP > 10 mm Hg (r = 0.75)**</td>
</tr>
<tr>
<td></td>
<td>40†</td>
<td>Immediately before obtaining invasive data</td>
<td>RAP = 1.62 E/e’ +2.13 (r = 0.7)††</td>
</tr>
<tr>
<td>Tricuspid E/A ratio</td>
<td>40±66</td>
<td>Immediately before obtaining invasive data</td>
<td>Good correlation with RAP (r = 0.57)**§§</td>
</tr>
<tr>
<td>RV rIVRT</td>
<td>45</td>
<td>Within 45 min</td>
<td>RV rIVRT < 59 ms was a predictor of RAP > 8 mm Hg (sensitivity, 80%; specificity, 88%; AUC, 0.994)</td>
</tr>
<tr>
<td>RA dimensions</td>
<td>80‡</td>
<td>Immediately before obtaining invasive data</td>
<td>3D RAVi ≥ 35 mL/m² + IVC ≥ 2 cm was accurate for identifying RAP > 10 mm Hg (sensitivity, 89%; specificity, 92%; accuracy, 88%)§§§</td>
</tr>
</tbody>
</table>

AUC, Area under the curve; HVFF, hepatic vein systolic filling fraction; NA, not applicable; NPV, negative predictive value; PPV, positive predictive value; RAVi, RA volume index; rIVRT, regional isovolumic relaxation time.

*Not applicable to mechanically ventilated patients.
†Twenty-nine percent of patients were mechanically ventilated.
‡Not applicable to patients who had undergone cardiac surgery and patients with severe left ventricular volume overload.
§Only patients with ejection fractions < 35% were included. Patients with severe tricuspid regurgitation were excluded.
||Imaging was obtainable in 90% of patients. Underestimation occurred when RAP was >12 mm Hg.
††Also validated for mechanically ventilated patients. Patients with severe tricuspid regurgitation were excluded.
§§Patients with mechanical ventilation or severe tricuspid regurgitation were not included.
**Also validated for mechanically ventilated patients.
††Not applicable to patients who had undergone cardiac surgery.
‡‡Only patients with acute decompensated heart failure were included.
§§§Inflow parameters could be determined in only 43% of patients.
||Analysis was not feasible in 18% of patients.

et al. in patients with heart failure did not find a good correlation between RAP and E/e’ ratio but did find a modest but significant correlation with tricuspid E/A ratio (r = 0.57, P = .02).

RV regional isovolumic relaxation time refers to DTI of the lateral tricuspid annulus in the apical four-chamber view and is measured as the time period between the end of systolic annular motion and the...
onset of the e’ wave. Using this index, it was found that RV regional isovolumic relaxation time < 59 msec corresponds to RAP > 8 mm Hg (sensitivity, 80%; specificity, 88%).

Doppler and DTI can provide an additional alternative for RAP evaluation when subcostal views cannot be obtained and there is inability to apply IVC and hepatic indices, as well as be used to corroborate the prediction of RAP using hepatic vein systolic filling fraction in patients on mechanical ventilation when the IVC collapsibility index is inaccurate.

RA Dimensions

Elevated RAP can lead to enlargement of the right atrium and increases in RA dimensions. Using two-dimensional echocardiography
Three-dimensional echocardiography (3DE) provides tomo-graphic imaging of cardiac chambers and has the potential to be a more accurate modality for atrial volume quantification than 2DE and has been validated using magnetic resonance imaging. Although qualitative and two-dimensional echocardiographic measures of the right atrium (both size and volume) do not significantly correlate with RAP, Patel et al. hypothesized that 3DE might aid in the identification of patients with heart failure with elevated RAPs. In their study, assessing the utility of 3DE for the evaluation of elevated RAP, RA size by 2DE was only modestly correlated with RA volume by 3DE (r = 0.58, P < .001). However, right atrium volume by 3DE was found to correlate with RAP (r = 0.51, P < .001). Compared with the traditional assessment using an IVC diameter ≥2 cm and decreased respiratory collapse of <40%, 3DE-measured maximal RA volume ≥35 mL/m² combined with IVC diameter ≥2 cm resulted in improved sensitivity for the identification of RAP >10 mm Hg in the study validation group (sensitivity, 86%; specificity, 92%; accuracy, 88%).

CONCLUSIONS

Currently, there is no single ideal parameter for noninvasive RAP estimation. Using the most recent ASE criteria based on IVC...
parameters, it is most appropriate to categorize RAP into low (0–5 mm Hg), normal (6–10 mm Hg), or elevated (11–20 mm Hg). We believe additional information from some of the methods discussed in this review should aid in the better quantification of RAP. As noninvasive evaluation of RAP involves indirect measurements, multiple factors must be taken into account to provide an accurate estimate of RAP. It is the interplay among these echocardiographic findings measuring dynamic changes, flow, and dimensions that yields the best noninvasive assessment of RAP (Figure 6). In our view, the best approach would be to implement a scoring system using the various available indices of these parameters. Incorporating these variables into routine daily echocardiographic evaluation requires only additional minimal effort and has the potential to improve the hemodynamic profiling of patients, which can lead to better patient management and outcomes.

REFERENCES

42. Lang RM, Bierig M, Devereaux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.

55. Deel GR, Collett N, Ashby A, Schmidt GA. Ultrasound accurately reflects the jugular venous examination but underestimates central venous pressure. Chest 2011;139:95-100.

